NOTE ON DECOMPOSITION SETS OF SEMI-PRIME RINGS
نویسندگان
چکیده
منابع مشابه
On centralizers of prime rings with involution
Let $R$ be a ring with involution $*$. An additive mapping $T:Rto R$ is called a left(respectively right) centralizer if $T(xy)=T(x)y$ (respectively $T(xy)=xT(y)$) for all $x,yin R$. The purpose of this paper is to examine the commutativity of prime rings with involution satisfying certain identities involving left centralizers.
متن کاملA Note on Skew Derivations in Prime Rings
Let m,n, r be nonzero fixed positive integers, R a 2-torsion free prime ring, Q its right Martindale quotient ring, and L a non-central Lie ideal of R. Let D : R −→ R be a skew derivation of R and E(x) = D(xm+n+r)−D(xm)xn+r − xmD(xn)xr − xm+nD(xr). We prove that if E(x) = 0 for all x ∈ L, then D is a usual derivation of R or R satisfies s4(x1, . . . , x4), the standard identity of degree 4.
متن کاملNote on Prime Representations of Convex Polyhedral Sets
Consider a convex polyhedral set represented by a system of linear inequalities. A prime representation of the polyhedron is one that contains no redundant constraints. We present a sharp upper bound on the difference between the cardinalities of any two primes.
متن کاملON FINITENESS OF PRIME IDEALS IN NORMED RINGS
In a commutative Noetherian local complex normed algebra which is complete in its M-adic metric there are only finitely many closed prime ideals.
متن کاملOn Rings with Prime Centers
Let R be a ring, and let C denote the center of R. R is said to have a prime center if whenever ab belongs to C then a belongs to C or b belongs to C. The structure of certain classes of these rings is studied, along with the relation of the notion of prime centers to commutativity. An example of a non-commutative ring with a prime center is given.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Hokkaido Mathematical Journal
سال: 1962
ISSN: 0385-4035
DOI: 10.14492/hokmj/1530691259